extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1C23 = C2×C4.D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).1C2^3 | 64,92 |
(C2×C4).2C23 = C2×C4.10D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).2C2^3 | 64,93 |
(C2×C4).3C23 = M4(2).8C22 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).3C2^3 | 64,94 |
(C2×C4).4C23 = D4⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 8 | 4+ | (C2xC4).4C2^3 | 64,134 |
(C2×C4).5C23 = D4.8D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).5C2^3 | 64,135 |
(C2×C4).6C23 = D4.9D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).6C2^3 | 64,136 |
(C2×C4).7C23 = D4.10D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4- | (C2xC4).7C2^3 | 64,137 |
(C2×C4).8C23 = D4.3D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).8C2^3 | 64,152 |
(C2×C4).9C23 = D4.4D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4+ | (C2xC4).9C2^3 | 64,153 |
(C2×C4).10C23 = D4.5D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | 4- | (C2xC4).10C2^3 | 64,154 |
(C2×C4).11C23 = C2×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).11C2^3 | 64,204 |
(C2×C4).12C23 = C2×C22.D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).12C2^3 | 64,205 |
(C2×C4).13C23 = C22.19C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).13C2^3 | 64,206 |
(C2×C4).14C23 = C2×C42.C2 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).14C2^3 | 64,208 |
(C2×C4).15C23 = C23.37C23 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).15C2^3 | 64,214 |
(C2×C4).16C23 = C23⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).16C2^3 | 64,215 |
(C2×C4).17C23 = C22.29C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).17C2^3 | 64,216 |
(C2×C4).18C23 = C23.38C23 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).18C2^3 | 64,217 |
(C2×C4).19C23 = C22.32C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).19C2^3 | 64,219 |
(C2×C4).20C23 = C22.33C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).20C2^3 | 64,220 |
(C2×C4).21C23 = C22.34C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).21C2^3 | 64,221 |
(C2×C4).22C23 = C22.35C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).22C2^3 | 64,222 |
(C2×C4).23C23 = C22.36C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).23C2^3 | 64,223 |
(C2×C4).24C23 = C23⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).24C2^3 | 64,224 |
(C2×C4).25C23 = C23.41C23 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).25C2^3 | 64,225 |
(C2×C4).26C23 = D42 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).26C2^3 | 64,226 |
(C2×C4).27C23 = D4⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).27C2^3 | 64,227 |
(C2×C4).28C23 = D4⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).28C2^3 | 64,228 |
(C2×C4).29C23 = Q8⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).29C2^3 | 64,229 |
(C2×C4).30C23 = C22.45C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).30C2^3 | 64,232 |
(C2×C4).31C23 = D4⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).31C2^3 | 64,235 |
(C2×C4).32C23 = C22.49C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).32C2^3 | 64,236 |
(C2×C4).33C23 = C22.50C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).33C2^3 | 64,237 |
(C2×C4).34C23 = Q82 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).34C2^3 | 64,239 |
(C2×C4).35C23 = C22.53C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).35C2^3 | 64,240 |
(C2×C4).36C23 = C22.54C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).36C2^3 | 64,241 |
(C2×C4).37C23 = C24⋊C22 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).37C2^3 | 64,242 |
(C2×C4).38C23 = C22.56C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).38C2^3 | 64,243 |
(C2×C4).39C23 = C22.57C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).39C2^3 | 64,244 |
(C2×C4).40C23 = C22.58C24 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).40C2^3 | 64,245 |
(C2×C4).41C23 = C2×C8.C22 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).41C2^3 | 64,255 |
(C2×C4).42C23 = D8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).42C2^3 | 64,256 |
(C2×C4).43C23 = D4○D8 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4+ | (C2xC4).43C2^3 | 64,257 |
(C2×C4).44C23 = D4○SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).44C2^3 | 64,258 |
(C2×C4).45C23 = Q8○D8 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | 4- | (C2xC4).45C2^3 | 64,259 |
(C2×C4).46C23 = C2×2- 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).46C2^3 | 64,265 |
(C2×C4).47C23 = C2.C25 | φ: C23/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).47C2^3 | 64,266 |
(C2×C4).48C23 = C22×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).48C2^3 | 64,194 |
(C2×C4).49C23 = C2×C42⋊C2 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).49C2^3 | 64,195 |
(C2×C4).50C23 = C22.11C24 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).50C2^3 | 64,199 |
(C2×C4).51C23 = C23.33C23 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).51C2^3 | 64,201 |
(C2×C4).52C23 = C2×C4⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).52C2^3 | 64,203 |
(C2×C4).53C23 = C2×C42⋊2C2 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).53C2^3 | 64,209 |
(C2×C4).54C23 = C23.36C23 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).54C2^3 | 64,210 |
(C2×C4).55C23 = Q8⋊6D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).55C2^3 | 64,231 |
(C2×C4).56C23 = C22.46C24 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).56C2^3 | 64,233 |
(C2×C4).57C23 = C22.47C24 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).57C2^3 | 64,234 |
(C2×C4).58C23 = Q8⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).58C2^3 | 64,238 |
(C2×C4).59C23 = C2×D4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).59C2^3 | 64,95 |
(C2×C4).60C23 = C2×Q8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).60C2^3 | 64,96 |
(C2×C4).61C23 = C23.24D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).61C2^3 | 64,97 |
(C2×C4).62C23 = C23.36D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).62C2^3 | 64,98 |
(C2×C4).63C23 = C23.37D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).63C2^3 | 64,99 |
(C2×C4).64C23 = C23.38D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).64C2^3 | 64,100 |
(C2×C4).65C23 = C2×C4≀C2 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).65C2^3 | 64,101 |
(C2×C4).66C23 = C42⋊C22 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).66C2^3 | 64,102 |
(C2×C4).67C23 = C2×C4.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).67C2^3 | 64,106 |
(C2×C4).68C23 = C2×C2.D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).68C2^3 | 64,107 |
(C2×C4).69C23 = C23.25D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).69C2^3 | 64,108 |
(C2×C4).70C23 = M4(2)⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).70C2^3 | 64,109 |
(C2×C4).71C23 = C2×C8.C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).71C2^3 | 64,110 |
(C2×C4).72C23 = M4(2).C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).72C2^3 | 64,111 |
(C2×C4).73C23 = C4×D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).73C2^3 | 64,118 |
(C2×C4).74C23 = C4×SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).74C2^3 | 64,119 |
(C2×C4).75C23 = C4×Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).75C2^3 | 64,120 |
(C2×C4).76C23 = SD16⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).76C2^3 | 64,121 |
(C2×C4).77C23 = Q16⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).77C2^3 | 64,122 |
(C2×C4).78C23 = D8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).78C2^3 | 64,123 |
(C2×C4).79C23 = C8○D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | 2 | (C2xC4).79C2^3 | 64,124 |
(C2×C4).80C23 = C8.26D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).80C2^3 | 64,125 |
(C2×C4).81C23 = C22⋊D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).81C2^3 | 64,128 |
(C2×C4).82C23 = Q8⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).82C2^3 | 64,129 |
(C2×C4).83C23 = D4⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).83C2^3 | 64,130 |
(C2×C4).84C23 = C22⋊SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).84C2^3 | 64,131 |
(C2×C4).85C23 = C22⋊Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).85C2^3 | 64,132 |
(C2×C4).86C23 = D4.7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).86C2^3 | 64,133 |
(C2×C4).87C23 = C4⋊D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).87C2^3 | 64,140 |
(C2×C4).88C23 = C4⋊SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).88C2^3 | 64,141 |
(C2×C4).89C23 = D4.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).89C2^3 | 64,142 |
(C2×C4).90C23 = C4⋊2Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).90C2^3 | 64,143 |
(C2×C4).91C23 = D4.2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).91C2^3 | 64,144 |
(C2×C4).92C23 = Q8.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).92C2^3 | 64,145 |
(C2×C4).93C23 = C8⋊8D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).93C2^3 | 64,146 |
(C2×C4).94C23 = C8⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).94C2^3 | 64,147 |
(C2×C4).95C23 = C8.18D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).95C2^3 | 64,148 |
(C2×C4).96C23 = C8⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).96C2^3 | 64,149 |
(C2×C4).97C23 = C8⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).97C2^3 | 64,150 |
(C2×C4).98C23 = C8.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).98C2^3 | 64,151 |
(C2×C4).99C23 = D4⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).99C2^3 | 64,155 |
(C2×C4).100C23 = Q8⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).100C2^3 | 64,156 |
(C2×C4).101C23 = D4⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).101C2^3 | 64,157 |
(C2×C4).102C23 = C4.Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).102C2^3 | 64,158 |
(C2×C4).103C23 = D4.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).103C2^3 | 64,159 |
(C2×C4).104C23 = Q8.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).104C2^3 | 64,160 |
(C2×C4).105C23 = C22.D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).105C2^3 | 64,161 |
(C2×C4).106C23 = C23.46D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).106C2^3 | 64,162 |
(C2×C4).107C23 = C23.19D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).107C2^3 | 64,163 |
(C2×C4).108C23 = C23.47D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).108C2^3 | 64,164 |
(C2×C4).109C23 = C23.48D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).109C2^3 | 64,165 |
(C2×C4).110C23 = C23.20D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).110C2^3 | 64,166 |
(C2×C4).111C23 = C4.4D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).111C2^3 | 64,167 |
(C2×C4).112C23 = C4.SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).112C2^3 | 64,168 |
(C2×C4).113C23 = C42.78C22 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).113C2^3 | 64,169 |
(C2×C4).114C23 = C42.28C22 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).114C2^3 | 64,170 |
(C2×C4).115C23 = C42.29C22 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).115C2^3 | 64,171 |
(C2×C4).116C23 = C42.30C22 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).116C2^3 | 64,172 |
(C2×C4).117C23 = C8⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).117C2^3 | 64,173 |
(C2×C4).118C23 = C8⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).118C2^3 | 64,174 |
(C2×C4).119C23 = C4⋊Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).119C2^3 | 64,175 |
(C2×C4).120C23 = C8.12D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).120C2^3 | 64,176 |
(C2×C4).121C23 = C8⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).121C2^3 | 64,177 |
(C2×C4).122C23 = C8.2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).122C2^3 | 64,178 |
(C2×C4).123C23 = C8⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).123C2^3 | 64,179 |
(C2×C4).124C23 = C8.5Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).124C2^3 | 64,180 |
(C2×C4).125C23 = C8⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).125C2^3 | 64,181 |
(C2×C4).126C23 = C8⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).126C2^3 | 64,182 |
(C2×C4).127C23 = C2×C4×Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).127C2^3 | 64,197 |
(C2×C4).128C23 = C23.32C23 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).128C2^3 | 64,200 |
(C2×C4).129C23 = C2×C4.4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).129C2^3 | 64,207 |
(C2×C4).130C23 = C2×C4⋊1D4 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).130C2^3 | 64,211 |
(C2×C4).131C23 = C2×C4⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).131C2^3 | 64,212 |
(C2×C4).132C23 = C22.31C24 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).132C2^3 | 64,218 |
(C2×C4).133C23 = D4×Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).133C2^3 | 64,230 |
(C2×C4).134C23 = Q8○M4(2) | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).134C2^3 | 64,249 |
(C2×C4).135C23 = C22×D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).135C2^3 | 64,250 |
(C2×C4).136C23 = C22×SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).136C2^3 | 64,251 |
(C2×C4).137C23 = C22×Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).137C2^3 | 64,252 |
(C2×C4).138C23 = C2×C4○D8 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).138C2^3 | 64,253 |
(C2×C4).139C23 = C2×C8⋊C22 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).139C2^3 | 64,254 |
(C2×C4).140C23 = Q8×C23 | φ: C23/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).140C2^3 | 64,262 |
(C2×C4).141C23 = C2×C8⋊C4 | central extension (φ=1) | 64 | | (C2xC4).141C2^3 | 64,84 |
(C2×C4).142C23 = C4×M4(2) | central extension (φ=1) | 32 | | (C2xC4).142C2^3 | 64,85 |
(C2×C4).143C23 = C8○2M4(2) | central extension (φ=1) | 32 | | (C2xC4).143C2^3 | 64,86 |
(C2×C4).144C23 = C2×C22⋊C8 | central extension (φ=1) | 32 | | (C2xC4).144C2^3 | 64,87 |
(C2×C4).145C23 = C24.4C4 | central extension (φ=1) | 16 | | (C2xC4).145C2^3 | 64,88 |
(C2×C4).146C23 = (C22×C8)⋊C2 | central extension (φ=1) | 32 | | (C2xC4).146C2^3 | 64,89 |
(C2×C4).147C23 = C2×C4⋊C8 | central extension (φ=1) | 64 | | (C2xC4).147C2^3 | 64,103 |
(C2×C4).148C23 = C4⋊M4(2) | central extension (φ=1) | 32 | | (C2xC4).148C2^3 | 64,104 |
(C2×C4).149C23 = C42.6C22 | central extension (φ=1) | 32 | | (C2xC4).149C2^3 | 64,105 |
(C2×C4).150C23 = C42.12C4 | central extension (φ=1) | 32 | | (C2xC4).150C2^3 | 64,112 |
(C2×C4).151C23 = C42.6C4 | central extension (φ=1) | 32 | | (C2xC4).151C2^3 | 64,113 |
(C2×C4).152C23 = C42.7C22 | central extension (φ=1) | 32 | | (C2xC4).152C2^3 | 64,114 |
(C2×C4).153C23 = C8×D4 | central extension (φ=1) | 32 | | (C2xC4).153C2^3 | 64,115 |
(C2×C4).154C23 = C8⋊9D4 | central extension (φ=1) | 32 | | (C2xC4).154C2^3 | 64,116 |
(C2×C4).155C23 = C8⋊6D4 | central extension (φ=1) | 32 | | (C2xC4).155C2^3 | 64,117 |
(C2×C4).156C23 = C8×Q8 | central extension (φ=1) | 64 | | (C2xC4).156C2^3 | 64,126 |
(C2×C4).157C23 = C8⋊4Q8 | central extension (φ=1) | 64 | | (C2xC4).157C2^3 | 64,127 |
(C2×C4).158C23 = C2×C4×D4 | central extension (φ=1) | 32 | | (C2xC4).158C2^3 | 64,196 |
(C2×C4).159C23 = C4×C4○D4 | central extension (φ=1) | 32 | | (C2xC4).159C2^3 | 64,198 |
(C2×C4).160C23 = C22.26C24 | central extension (φ=1) | 32 | | (C2xC4).160C2^3 | 64,213 |
(C2×C4).161C23 = C22×M4(2) | central extension (φ=1) | 32 | | (C2xC4).161C2^3 | 64,247 |
(C2×C4).162C23 = C2×C8○D4 | central extension (φ=1) | 32 | | (C2xC4).162C2^3 | 64,248 |